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ImmunoBERT: a deep learning framework to predict ICI ZephyrAl models outperform the state-of-the-art at
patient response predicting ICl survival
mmune checkpoint inhibitors (ICls) have transformed cancer therapy, yet their response rates The C-index (or concordance index) statistic was used to evaluate and compare predictive
remain modest, ranging from 20-40% across different cancer types [1]. There is a critical need accuracy of ImmunoBERT and different survival ML models, where higher C-index indicates
for predictive tools to optimize treatments, avoid unnecessary side effects and identify oetter predictive accuracy of the model. Despite the limited specificity of our inputs,
natients most likely to respond to ICls. Towards this goal, we developed a novel machine MMunoBERT (C-index= 0.636) outperformed the top DREAM challenge models (C-index of
earning model for predicting overall survival (OS) in cancer patients undergoing treatment 0.607/ for top submission) in predicting patient response to ICl therapies.

with [Cls, called ImmunoBERT, which takes as input clinical and molecular data currently
available in real-world settings.
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We curated a comprehensive clinicogenomics dataset of cancer patients treated with anti-PD1 Concordance Index 0.621 0.630 0.636 0.607
and anti-CTLA4 checkpoint therapies (n=1/00 patients), IClI drug structure embeddings, and
binding atfinity profiles of ICl drug targets. Using this dataset, we trained ImmunoBERT (Figure Mean Dynamic AUC 0.335 0.323 0.437 _
1) which leverages large language models (LLMs) [2] and ProteinBERT (a deep learning mode

: : : : : Figure 3 | Concordance Index and Dynamic AUC metrics comparing ZephyrAl models against the DREAM challenge. All
built upon the classic Transtormer/BERT arChlteCture) [3] to learn a generahzaﬂon between IC models that used target/drug embeddings outperformed the DREAM winner. Models that received fixed embeddings (Random Survival
drugs, their protein ta I’thS, Clinically available genomics data and patient outcome. Forest, Fixed-Embedding Neural Net) achieved similar concordance scores as ImmunoBERT. Dynamic AUC was not reported by DREAM,

but as shown in Fig.4A-B, it captures the performance difference between ImmunoBert and the other ZephyrAl models.

Correlations and higher-order interactions between 220 genes commonly sequenced on A. O rein CONCOnE0.6573 et ConCO0.CA1e
commercial NGS panels were also leveraged using ImmunoBERT architecture, to reconstruct o — oo 7o o — oo 7o
features that improved ICl survival response prediction accuracy, including n=32 tumor m — eventa 20 mon o — eventat 20 mon

microenvironment (TME) features, tumor mutational burden (TMB) and PDL1 expression.
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Figure 1 | ImmunoBERT learns a generalization between ICI drugs, their protein targets, clinically available data, and patient Time (Months) 0 5 10 15 20 25
outcome. Clinical and NGS data available in real-world settings are used as inputs for ImmunoBERT (top, left). ImmunoBERT predicts a Time (Months)
patient's survival probability to a specific ICl over an observation window (top, right). Several open source and proprietary models uncover Figure 4 | Learning ICl-specific drug/target embeddings improves the differentiation in predicted patient outcomes. A) Survival
signal in clinically available data that is useful for predicting outcome to immunotherapies. Real-world data is first used to reconstruct gene Curves for a Fixed- Embeddlﬂg Neural Net - Despite the vamety ‘of event and censoring times, there is very little differentiation between
commercially available NGS panels, and BioBERT which leverages signal in patient clinical data (bottom, left). Drug and target protein chains embedding neural net, ImmunoBert is able to generate more specific and informative survival curves. €) Dynamic AUC Curve for
are further used to encode protein binding information (bottom middle), which are fed into a deep neural network to estimate a patient’s ImmunoBert - AUC spikes to 0.58 vvhen predicting survival 5 months into the future, with a steady drop off in AUC as the time of prediction
survival probability over an observation window (bottom right). reaches the end of the observation window.

MMUNOBERT performance was benchmarked against top performing machine learning Incorporatlng targEt & drug prOtEIn structures Improves

models from the Anti-PD1 Response Prediction DREAM Challenge [4]. The Anti-PD1 Response IC| survival prediction
Prediction DREAM Challenge [5] specifically focuses on immunotherapies targeting the
Anti-PD1 pathway in non-small cell lung cancer (NSCLC).

To test the efficacy of providing ICI drug and target embeddings to predict overall survival
(OS), we first generated static embeddings for each drug/target combo using ProtBERT [6], a
model pre-trained to reconstruct raw protein sequences. When fed to several out-of-the-box
survival models, we immediately see concordance scores (on par with/outperforming) those
from the top DREAM submissions (Fig 3). However, when plotting the survival curves, models
were barely able to distinguish between samples with various survival times (Fig 4A).

Zephyr's models are purpose built to leverage RWD

Many of the top submissions to this challenge rely on gene expression data, which is often
prohibitively expensive or otherwise impractical to obtain in clinical environments, outside of

clinical trials or research settings. ImmunoBert, on the other hand, utilizes transtfer learning to specialize the generic protein
embeddings to predict survival. While effects on concordance score were minimal, a clear
Our approach leverages signal existing in molecular and clinical data commonly available in differentiation in survival curve estimates for each sample was observed (Fig 4B).
real-world settings to reconstruct a patient's tumor expression profile. This approach uses as When evaluating the accuracy and precision of ImmunoBert, we see its peak performance
input mutation and copy number data from widely used commercial next generation occurs when predicting survival 6 months out (Fig 4C), with a steady drop-off as survival time
sequencing (NGS) multi-gene panels as well as clinically available annotations, such as disease extends. The sharp drop in AUC from 2-3 months is likely due to the large proportion of
type, patient gender, etc. Critically, we also supply the IClI drug structure embeddings and samples that are right-censored within the first several months. We are accruing additiona
binding affinity profiles of ICl drug targets, so that the model can learn how the context of clinicogenomic ICl patient data to enhance overall model accuracy, particularly for extendec
tumor's genetic profile affects the drug's efficacy. time points. .
- | | | Conclusions
We curated a comprehensive clinicogenomics dataset of cancer patients treated with | | -
anti-PD1 and anti-CTLA4 checkpoint therapies (n=1700 patients), ICl drug structure Our study demonstrates the value of integrating biologically relevant factors, such as drug
embeddings and binding affinity profiles of ICI drug targets. ;tructure, target binding affinity and ggnqmm information, into mgchme Iearm.ng models to
) ) improve accuracy of ICl response predictions. Moreover, by effectively leveraging real-worlo
' Survival Distribution Pre-Filtering ' Survival Distribution Post-Filtering o ) . . _ . ) ..
Survival times recorded in these — s e — somor s clinicogenomics data, including TME characteristics, we were able to reconstruct additiona
datasets were heavily right - F s B piologically relevant features, which further improved both the performance anc
skewed (Fig 2A). In order to s interpretability of ImmunoBERT over current models. ImmunoBERT offers improved IC
mitigate the impact on the 3™ 3 orognostic capabilities, facilitating personalized treatment decisions to these promising drugs
model, patient survival times R . and enhancing patient care. References
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This thresholding artificially spikes the number of patients censored at 24 months, but
spreads the remaining patients more evenly (Fig 2B).
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